{ "format" : "linked-data-api", "version" : "0.2", "result" : {"_about" : "http://vocabs.ardc.edu.au/repository/api/lda/codata/codata-research-data-management-terminology/v001/resource.text?uri=https%3A%2F%2Fterms.codata.org%2Frdmt%2Fdirty-data", "definition" : "http://vocabs.ardc.edu.au/repository/api/lda/codata/codata-research-data-management-terminology/v001/resource.text?uri=https%3A%2F%2Fterms.codata.org%2Frdmt%2Fdirty-data", "extendedMetadataVersion" : "http://vocabs.ardc.edu.au/repository/api/lda/codata/codata-research-data-management-terminology/v001/resource.text?_metadata=all&uri=https%3A%2F%2Fterms.codata.org%2Frdmt%2Fdirty-data", "primaryTopic" : {"_about" : "https://terms.codata.org/rdmt/dirty-data", "altLabel" : [{"_value" : "Dirty dataset", "_lang" : "en"} ], "definition" : "Data that contain errors. Can be caused by a number of factors including: inaccurate, incomplete or erroneous data such as spelling or punctuation errors, incorrect data or incorrect data type associated with a field, incomplete or outdated data, duplicate data, inconsistent data, incorrectly ordered data, improper parsing of fields from disparate systems, etc. Using a dirty dataset can lead to spurious associations, false conclusions and misdirected investments.", "editorialNote" : "Expert review decision, 2021-22: No review this cycle", "inScheme" : {"_about" : "https://terms.codata.org/rdmt", "hasTopConcept" : ["https://terms.codata.org/rdmt/dirty-data"]} , "prefLabel" : {"_value" : "Dirty data", "_lang" : "en"} , "related" : [{"_about" : "https://terms.codata.org/rdmt/data-hygiene", "related" : ["https://terms.codata.org/rdmt/dirty-data"]} ], "topConceptOf" : {"_about" : "https://terms.codata.org/rdmt", "hasTopConcept" : ["https://terms.codata.org/rdmt/dirty-data"]} , "type" : ["http://www.w3.org/2000/01/rdf-schema#Resource", "http://www.w3.org/2004/02/skos/core#Concept"]} , "type" : ["http://purl.org/linked-data/api/vocab#ItemEndpoint", "http://purl.org/linked-data/api/vocab#Page"]} }